
 1

Operation Manual of
Beauto Builder R

Software made specifically for Beauto Racer

Vstone Co., Ltd.

 2

目次
1. Introduction 4

1-1. Installation of software 5
1-2. Connection of the robot to PC/Recognition 6
1-3. Explanation of hardware of the robot 9

2. How to create a sequence program 10

2-1. Explanation of window 10
2-2. Addition of action block 11
2-3. Creation of flowchart 12
2-4. Writing/Execution of program 13
2-5. Adjustment of motor speed 16
2-6. Addition of other action blocks 18
2-7. Setting of details of command 20
2-8. Save/Load of program 22
2-9. LED/Wait command 23

3. Creation of a program using the sensors 29

3-1. Check of sensor reaction 29
3-2. How to use Branch 31
3-3. Programming for Line Trace 38
3-4. Line Trace using the right and left sensors 43
3-5. RANDOM command 50

4. Creation of program using LOOP 51
5. Using Simulator 55

5-1. Running Simulator 55
5-2. Explanation of Simulator window 55
5-3. The operation of Simulator 56
5-4. Adjustment of the virtual robot motor speed 58
5-5. Checking the Sensor values 58
5-6. Menu and Toolbar in Simulator Windows 59
5-7. Select the course 60

5-7-1. trying sequence program course（course1/2） 61
5-7-2-7. Using sensors（course 3） 62

 3

5-7-3. Line Trace using a sensor（course 4,5） 63
5-7-4. Line Trace using the sensors（course 6） 64
5-7-5. Figure of 8 line trace and the advanced Line trace.(Course7,8) 65
5-7-6. The original course（course 9） 65

6. Functions for advanced-level users 67

6-1. Wheel control with setting of speed and turning rate 67
6-2. Display of Memory Map 70
6-3. Use of Arithmetic block 71
6-4. Branch command for advanced-level users 74
6-5. Judgment for overlap of blocks 75
6-6. Check of LOOP connection 75

7. Convenient functions for programming 76

7-1. Move of action block 76
7-2. Delete of action block 77
7-3. Copy/Cut/Paste of action block 77
7-4. Selection of action block 78
7-5. Operation of arrow path 78
7-6. Explanation of menu/toolbar 79
7-7. Explanation of shortcut key 81

8. Others 82

8-1. Answers to the exercises 82
8-2. Load of program from the robot body 85
8-3. Update the firmware of the robot 86
8-4. Save screenshot of Program area 87
8-5.Q&A 88

 4

1. Introduction

We thank you for purchasing ”Beauto Racer” (hereinafter, referred to as the ”robot”
or ”robot body”). Beauto Builder R (hereinafter, referred to as ”this software”) is
software for making programs for the robot on PC connected to the robot. “Operation
Manual of Beauto Builder R” (hereinafter, referred to as ”this document”) describes how
to operate this software. This document explains the operation procedure with
programming exercises and is designed on the assumption that the user practices,
actually operating the robot. Therefore, it is recommended to read this document step
by step from the beginning.

 5

1-1. Installation of software
First, install this software on PC. This software operates on PC having the following

environment:

・OS: Windows2000/XP/Vista
・CPU: Pentium-III or higher (1 GHz or higher recommended)
・RAM: 128 MB
・Interface: USB port
・Screen size: XGA(1024×768) or more
・Simulator requires the installations of DirectX9.0b or newer

If you have the CD-ROM included in accessories of this product at hand, set the CD to
PC and open the CD Drive under My Computer. The CD contains a folder with the
name ”Beauto Builder R”. Copy the folder to any place (such as Desk Top) on PC. Now,
the installation is completed.

 If you don’t have the CD-ROM, access to the User Support page below and download
the latest version of the software.

●Beauto Racer Support Page URL
http://www.vstone.co.jp/top/products/robot/beauto/rdownload.html

 Since the downloaded file has a ZIP compression format, uncompress the file. After
uncompression, a folder with the name ”BeautoBuilderR” is created. Copy the folder to
any place on PC (such as Desk Top).

Copy the folder “BeautoBuilderR”
to PC.

 6

1-2. Connection of the robot to PC/Recognition
 After completing the installation of this software, let’s connect the robot to PC and

check that PC recognizes the robot. First, turn OFF the power switch on the robot body.
Then, with the front side of robot facing to the USB terminal mark (see the figure
below), insert the end of robot into the USB terminal of PC.

For your information, using a commercially available ”USB terminal extension cable”,
the robot can be connected to PC via the cable without being directly connected.

 When PC and the robot are connected for the first time, a dialogue balloon as shown
below appears on the PC screen. If the message ”A new hardware has been installed and
PC is now ready for use.” is displayed, PC has recognized the robot successfully.

 When PC and the robot are connected next time, PC automatically recognizes the
robot without displaying the dialogue balloon.

Before connecting the robot to PC, be sure to turn off the power switch on the robot.
If the power switch is ON, interruption of communication may occur or the motor may run by itself.

USB terminal extension
cable (example)

Aligning the front side of robot with
the USB terminal mark, insert the
end of robot into the USB port.

USB terminal
mark

Found New Hardware. Ready to use.
If this message appears, recognition is completed.

Found New Hardware.

USB Human interface device.

 7

 Now, in order to make sure that the above-mentioned procedure was conducted
properly, let’s start up this software and communicate with the robot. First, open the
folder ”BeautoBuilderR” copied to PC. You will find the execution file ”cl_edit_r.exe” in
the folder. Double-click the file for execution.

 After the double-click, this software starts up and the window shown below appears
on the screen.

※ When the error message["Gdiplus.dll Not Found"] is displayed, Open the
folder''gdiplus'' in the folder ''BeautoBuilderR'',copy the file ''gdiplus.dll'' and put it in
the folder that contains the file ''cl_edit_r.exe''.

 In the upper right of the window, the current status of communication with the robot
is displayed in text. In a case where communication with the robot has not been
established, such as in the case where the robot has not been connected to PC, “Not
Connected” is displayed. When PC and the robot has been connected, communication
automatically starts and “Now connecting” is displayed in the upper right of the
window.

「Open the folder “BeautoBuilderR”
and double-click on ”cl_edit_r.exe”.

Start-up window of
BeautoBuilderR

When no communication with
the robot has been established,
“Not Connecting” is displayed.

When the robot has been connected to
PC, communication automatically starts
and “Connecting” is displayed.

 8

 In the fields for “Left sensor” and “Right sensor” of the left part of the window, the
current sensor values of the robot are displayed.

 During communication with the robot, the sensor value is displayed.

・ The robot has not been fully inserted into the USB terminal of PC as far as it goes.

The robot has been inserted obliquely.
¾ Insert the robot into the terminal straight as far as it will go so that PC and the

robot is properly connected.
・ The robot has been inserted with its front side and back side reversed.
¾ With the front side and back side of the robot in the correct orientation, insert

the robot into the USB terminal so that PC and the robot is properly connected.
・ The robot has been inserted into and removed from PC many times.
¾ If the robot has been inserted into and removed from PC many times, it may

take a little longer time for PC to recognize the robot. In this state,
communication is established properly, but if you feel uncomfortable with it,
reboot the PC.

During communication
with the robot, the sensor

value is displayed.

 9

1-3. Explanation of hardware of the robot

 The robot body is equipped with interfaces including motors, sensors and LEDs.
The location and name of each equipment are as shown below.

Right sensor
Detects lines

Right LED
Turns on and off on

a program.

Left LED
Turns on and off on

a program.

Power switch

Left sensor
Detects lines

Back side

Left wheel Right wheel

Front side

Battery box

 10

2. How to create a sequence program
Hereinafter, programming using this software will be described. First, the basic

points such as the basic operation of this software and usable commands will be
explained, actually programming.

2-1. Explanation of window
The window of this software is roughly divided into a left part and a right part. The

left part is roughly into three areas.
The areas in the left part of the screen are called, in the order from the top, ”Icon

Area” in which ”actions” (commands) to be used in a program are selected, ”Sensor
Area” in which the current sensor status of the robot is displayed, and ”Setting Area” in
which details of an action is set.

The right part of the screen is called ”Program Area” in which a program is created by
combining actions. When using the simulator, open Simulator Window.

Furthermore, at the top of the window, the ”menu” and ”toolbar” are provided. The

menu refers to the character strings directly below the window title, which is used for
save and load of programs and setting for the robot. The toolbar refers to the buttons
arranged side by side directly below the menu. With one button in the tool bar, some of
functions included in the menu can be called up.

“Simulator Window”

“Icon Area”
Actions to be incorporated in

a program are selected.

“Program Area”
A program is created by

combining ”action blocks”.

“Sensor Area”
Current values of the sensors are

displayed.

“Setting Area”
Details of action blocks are set.

「"Menu": Used for various settings
such as save and load of program.

"Tool bar": Used for call up several
functions in the menu with one button.

 11

In the Program Area in the right part of the window, actions are displayed in the form
of ”action block” color-coded and symbolized according to the kind in a way easy to
understand. Action blocks are connected with blue and red arrows, which indicate the
sequence of execution of a program. A program always starts with the action block
of ”Start” and end with the action block of ”Exit”.

In this way, this software allows you to create a program in a flowchart form by
connecting various kinds of action blocks to meet the purpose of the program.

2-2. Addition of action block
 Now, let’s make a sequencest program where the robot just moves forward.
First, an action block (command) to be used in the program is selected from the Icon

Area in the left part of the window, and then it is added to a place you like in the
Program Area in the right part of the window.

 Click the up-arrow button (see the figure below) from the Icon Area. This button is for
the command ”Move Forward”. By clicking the button, its color changes. Next, click on a
point you like in the Program Area with the mouse. With the click of the mouse, the
command selected in the Icon Area are added to the point as the ”action block”.

Example of a window where a
program is being created.

Just like making a flowchart, a
program can be made by connecting

“action blocks”.

Click the “Move Forward”
command button in Icon Area.

Next, click in Program Area to add the
action block to the point where the cursor is

placed.

 12

 Thus, commands used in a program can be added by the procedure; ”In the Icon Area,
click the command to be used” → ”Click a point in the Program Area where the
command is to be added”

2-3. Creation of flowchart

 Now, the command to ”Move the robot forward” was added in the program. The robot,
however, does not move as it is even if the program is executed, because the added
command “Move Forward” has not been incorporated between the ”Start” and ”Exit”
arrows in the program. In order to make the robot execute the added command, the
arrows of the action blocks need to be re-connected to incorporate the added action block
in the flowchart. Let’s re-connect the arrows as mentioned below.

 To re-connect the arrow of action block, click the root or end of arrow of the action
block and drag. By dragging the mark ■ at the root of arrow or the mark ▲ at the
end of arrow, the color of the arrow changes to purple and the tip of arrow can be moved
freely. By dragging the tip of arrow and putting the mouse cursor on another action
block, the arrow is automatically connected to the action block. Then, by releasing the
mouse button, the arrow is re-connected.

 As shown in the figures below, connect the arrow of the action block ”Start” to the
action block ”Move Forward”.

Drag the root and
end of the arrow.

Drag the arrow to the target block,
and it is automatically connected.

Release the mouse button,
and connection is completed.

 13

 In the same way, connect the arrow of the action block “Move Forward” to the action
block “Exit”. There is no arrow extended from the action block “Move Forward”, but
by clicking the mark ■ at the root, an arrow is extended.

 As described above, be sure to connect the arrow of the last command to the action
block ”Exit” in a program.

* Only to the action block “Start”, no arrow can be connected. It escapes from connection
of an arrow.

2-4. Writing/Execution of program
 Here, let’s write the created program in the robot and execute it. First, connect the
robot to PC and establish communication. After making sure that PC is communicating

with the robot, click button.

For the end of the program,
be sure to connect to ”Exit”.

Even if there is no arrow
extended, an arrow is extended

by dragging the mark ■.

② Click button ①Make sure that ” Now
connecting” is displayed and PC is

communicating with the robot.

 14

After clicking the button, the confirmation message for execution of writing
appears. Click ”Yes”. After click, the window showing the writing status of the program
on the screen appears and writing starts. When the window showing the writing status
disappears, writing has been completed.

 If a program cannot be normally written because of interruption of communication,
etc. during writing, the following message is displayed. In this case, click ”OK” to close
the message and re-do writing according to the proper procedure.

 One of the major causes of program writing error is ”The robot was touched or moved
during writing”. If the robot is touched or moved during writing, communication may be
interrupted, resulting in a writing error. During writing, it is recommended to leave the
robot without touching it till writing is completed.

After completing the writing of the program, let’s execute the program. By turning on

the power of the robot with the robot removed from PC, the robot starts the program
soon. First, remove the robot from PC. Then, place the robot on a safe place to prevent it
from falling from a desk or hitting an object while it is moving. After it’s ready, turn on
the power switch and release it.

* During writing of a program, do not remove the robot from PC
or do not touch or move the robot roughly.

Wait till writing is completed
and the dialogue disappears.

Click “Yes”.

 15

When the power switch is turned on, the robot moves forward for about 1.5 seconds
according to the created program and stops. After the program is executed till the end,
the robot stops. If you want to start the program again, turn off the power switch and
turn it on again. If you want to stop the program in midstream, turn off the power
switch.

 If the program is not executed normally, such as the case where one or both motors do
not run, the assembly of the robot may have a problem. Re-check for the following
points:

Remove the robot from PC and
turn on the power switch.

OFF ON

● The motor is mounted in an inverted position.
¾ In a correct position, the brown fittings on the motor are contacted with the board of

robot body. Re-assemble so that the motor is placed in a correct position.
● The brown fittings of the motor protrude from the back holes.
¾ The fittings on the motor were raised too much during assembly. Lay down the fittings a

little lower and re-assemble.
● The battery is inserted with reversed polarity.
¾ As shown in the drawing on the board of robot body, insert the battery in a correct

direction.
● The motor does not run properly unless the motor holder is pushed in with a finger.
¾ The motor holder may not be sufficiently pressed in or the fittings on the motor may not

be sufficiently raised. According to the Assembly Manual, raise the fittings on the motor
up to 30 degrees or so and press the motor holder in sufficiently.

 16

2-5. Adjustment of motor speed
 When a program is executed, some users may experience such a problem that ”the
robot will not move straight or it turns slightly right or left”. This is caused by the
individual difference of parts or the ground where the robot moves. In this program,
ideally, the robot should run straight. Therefore, let’s adjust the right and left motor
speeds on this software to make the robot run straight.

 First, in the menu at the top of the window, click “Setting” → “Setting of the Motor
speed…”, and the dialogue for setting opens.

 The motor speed can be set individually for the right and left motors. The setting
value is within 0 to 100%, and the larger the value is, the higher the motor speed
becomes. The value can be set by dragging the slider tab with the mouse or directly
entering the value on the keyboard. After changing the setting, click ”OK” to confirm
the entry. To stop the change, click ”Close”.

 The setting of simulator robot speed is separate from this. Refer to ’’ Simulator’’ for
details.

Click “Setting” → “ Motor
Setting”

Directly input a
numerical value.

Drag the tab with
the mouse.

 17

 To make the new motor speed take effect on the robot, the value must be written into
the robot. The setting of the motor speed is written at the same time when the program
is written into the robot. When the setting of the motor speed has been changed, write
the program into the robot.

 After completion of writing, re-execute the program and make sure that the motor
speed has been adjusted properly. If it has not been adjusted properly, re-adjust it on
this software and write it into the robot.

 As explained at the beginning, the motor speed changes depending on the individual
difference of parts or the ground where the robot moves. Therefore, if any part is
replaced or the robot is operated in a different place, a deviation may occur again. In
addition, if the motor speed is too high or low, the robot may not move properly
according to the program. In such cases, re-adjust the motor speed.

By clicking '' Obtaining the motor speed setting automatically,when starting
connection.'',the setting of motor speed is automatically taken out from the robot in the
connecting robot to PC.

By clicking, the setting of motor speed is automatically taken out
from the robot in the connecting robot to PC. It is useful function,

when multiple people use same PC.

When the setting has been

changed, click to start
writing.

The setting of the motor speed is
written into the robot concurrently

with the writing of the program.

In the case where the robot moves straight as it is, adjustment is not needed.
However, for the purpose of learning the adjustment procedure, it is recommended to
change the setting of motor speed and check to see if the motion of the robot changes.

 18

2-6. Addition of other action blocks

 Here, let’s create a program including multiple commands. Add the
commands ”Stop”, ”Turn right” and ”Turn left” to the above program.

 After adding the commands into the Program Area, the arrows of action blocks must
be connected in the same way as previously to create a program. Now, connect the
commands in the order of “Move forward”→”Turn left ”→”Stop”→”Turn right ”.

From the left, ”Turn left ”, “Stop”
and “Turn right ” commands

Add three commands
into Program Area

Connect in the order, “Move
forward”, ”Turn left ”, “Stop”

and ”Turn right”.

 19

After creating the program, write it into the robot and execute it. The robot will be
operated in the order of ”Move forward”→”Turn left ”→”Stop”→”Turn right ”
according to the program.

When multiple action blocks are added in the Program Area, the program becomes
hard to read. Move the action blocks to appropriate positions by dragging them with the
mouse so that the program becomes easy to read. In a general flowchart, commands are
arranged vertically along the flow of a program. Let’s arrange the blocks according to
the order.

When the action blocks connected by arrows are put close to each other, the arrows
will be shortened as shown in the figure below.

Shortened arrow

Connect in the order, “Move
forward”, ”Turn left ”, “Stop”
and ”Turn right”.

Drag the block with
the mouse to move.

Click the action block to
be moved.

 20

2-7. Setting of details of command
 In creation of the program so far, the commands selected from the Icon Area were
incorporated into the program as they were. For each command, more detailed setting
such as ”Change the time of the wheel motion” can be made. Now, let’s change the
settings of the commands added to the program individually.

 First, click the action block “Move Forward” with the mouse. The color of the block
will change and at the same time, a red frame will be displayed around the block.

 Next, check ”Setting Area” in the lower left part of the window. The Setting Area is for
changing the details of setting for a command. Click the action block “Move Forward”,
and the content of this Area changes as shown in the figure below.

 The value ”1.5 sec.” displayed here indicates how many seconds the robot is to move
forward. By changing this value, the robot is allowed to move forward for a longer (or
shorter) time than the time set in the current program. The number of seconds can be
set within 0.0 to 25.5 seconds in increments of 0.1 second. The value may be set by
entering on the keyboard or clicking the spin button on the right side. Now, change the
first set value ”1.5 sec.” to ”3.0 sec.”.

 Concerning the item ”Move forward”, how to deal with it is difficult, and the
explanation is not be made here. For detail, see the ”Creation of a program using the
sensors” described later.

Click the action block “Move
Forward”. A red frame is

displayed around the block.

The time for the robot to
move forward can be set in
increments of 0.1 second.

This setting item will be
described later.It is not

selected now.

Change the number of
seconds to 3.0 seconds.

 21

 After changing the value, re-write the program into the robot and execute it. Check to
see if the time to move forward became longer.

 After executing the program and making sure that the time to ”Move forward” has
been changed, click the other commands such as ”Turn right ” and “Stop” in Program
Area and check the respective content in the Setting Area.
For the commands “Turn right”, ”Turn left” and “Stop”, the time for the motor to run (or
stop) can be set in the same way as for the above-mentioned command ”Move forward”.

 As for ”Start” and “Exit”, there is no setting item that can be changed. Therefore, the
message as shown in the figure below is displayed in the Setting Area.

After changing the setting,

click and write the
program into the robot.

 22

2-8. Save/Load of program

 A program created with this software can be saved in a file and loaded from a file. To
save a program in a file, follow the procedure below.

 To save a program in a file, click ”File”→”Save as” on the menu. The window as
shown int the right figure below will appear. Enter the file name for the program and
click ”Save”.

 To load a program from a file, click ”File”→”Open” on the menu. The window as
shown in the right figure below will appear. Enter the file name for the program to be
loaded and click ”Open”.

Click “Save as”.

1. Enter the file name for the
program to be saved

2. Click ”Save”

Click ”Open”.

1. Click the file to be loaded.

2. Click ”Open”.

 23

 By clicking the button on the toolbar at the top of the window, a file can be saved.
By clicking the button, the program can be loaded from the file.

2-9. LED/Wait command

Here, let’s use other commands than the commands for moving the motor. First of all,
the program which is currently being created must be deleted and a new program will
be created. Click ”File”→”New creation” on the menu. At this time, if the program
which is currently being created has not been saved in a file, the message in the right
figure below is displayed. When you want to save the current program in a file,
click ”Yes”, while when you don’t want to save it, click ”No”.

 To start creation of a new program, you may click the button on the tool bar.

You may click this button to
load the program.

You may click this button to
save the program.

Crick “New”.

To save the current
program, click ”Yes”.

Not to save the current
program, click ”No”.

 24

 After completion of creation of a new program, add the two commands as shown in
the figure below from the Icon Area to the Program Area. These are the commands for
operating the LEDs on the robot body. ”LED left” is for operating the left LED and ”LED
right” is for the right LED.

 In the Setting Area, the LED command is displayed as shown in the figure below. In
the Setting Area, there are three option items for setting of LED turning on or off.”Turn
ON” is for turning on the LED, and ”Turn OFF” is for turning off the LED. ”Leave ON
for ?? seconds” is for leaving the LED ON for the designated seconds and then turning
off the LED.

 Now, let’s create a program in which the right and left LEDs are lighted individually
for 2 seconds. For the two LED commands, change the current setting ”Turn ON” to
“Leave ON for ?? seconds”, and set the number of seconds at 2. After completion of
change in the Setting Area, connect the action blocks for the two LEDs in the Program
Area.

Command for the left LED

Command for the right LED

The LED is turned ON. Proceed
to the next command while
leaving the LED ON.

The LED is turned OFF.
Proceed to the next command
while leaving the LED OFF.

Leave the LED ON for the designated
seconds. After a lapse of the

designated time, the LED is turned
off and proceed to the next command.

Select “Leave ON for ?? seconds”
and set the number of seconds at 2.

Connect the arrows of the
action blocks for LEDs.

 25

 After completion of creation of the program, write it into the robot and execute it.
During execution, turn over the robot and check to see if the LEDs operate properly.

 Next, let’s create a program in which ”The right LED is left ON and the left LED is
left flashing at intervals of 1 second.” Seemingly, this program is difficult, but you can
create it easily if you understand the characteristics of LED commands.

 As explained above about the Setting Area, ”Turn ON” and ”Turn OFF” mean to
proceed to the next command “leaving the LED ON” and “leaving the LED OFF”,
respectively. By making good use of the commands, both LEDs can be turned on or
either the right or left LED can be lighted up individually. Now, let’s make the part of
program for “the right LED is left ON after the program starts and the right LED is
turned OFF when the program ends.”

 When this program is executed, the right LED will be left ON. (If a command having
no arrow connected to any block is executed, the program will end in the same way as
the case where ”Exit” is clicked.)

The right and left LEDs are lighted
up respectively for 2 seconds.

By the first command,
the LED is left ON.

By the last
command, the LED

is turned OFF.

Command for
the right LED

Command for
the left LED

 26

 Next, let’s make the part of program for ”the left LED is left flashing at intervals of 1
second.” The part of ”flashing at intervals of 1 second” is analyzed as repetition of two
commands ”Flash ON for 1 second” and ”Flash OFF for 1 second”. The command ”Leave
ON for 1 second” can be realized by the command ” Flash ON for 1.0 second” just as the
above created program. Now, add two commands for the left LED to the Program Area
and set “Leave ON for 1 second” for both of them.

How can the command ”Flash OFF for 1 second” be realized? If a setting of a
command ”Leave OFF for ?? seconds” could be exist for LED, it would be solved easily.
Unfortunately, however, such a setting does not exist. Then, you can use a new
command ”Wait”. The command for Wait is displayed in the Icon Area and the Program
Area as shown below.

Command for
the left LED

Set at “Leave ON for 1
second”.

Command for ”Wait”
in Icon Area

Command for ”Wait”
in Program Area

 27

Wait is a command for ”Wait for the next command while keeping the robot in the
current state.” When in the state where the motor of robot is running or the LED is
lighted up, for example, Wait is executed, the robot will wait for the designated time
keeping the motor or LED in the current state. It means that the state of ”Leave OFF
for 1 second” can be produced by executing Wait for one second in the state where ”the
right LED is ON and the left LED is OFF”.

 The setting item for the Wait command is only a waiting time. In the Setting Area, it
is displayed as shown in the figure below, and the waiting time shall be set within 0 to
25.5 seconds. The setting method is the same as that for other commands.

 Now, let’s add two Wait commands to the Program Area and set the waiting time for
both commands at 1.0 second.

Setting item for ”Wait” in Setting
Area.Set the waiting time within 0

to 25.5 seconds.

Set the waiting time at
1.0 second.

“Wait” command

 28

 Now, all commands required for the program are prepared. The arrows of action
blocks must be connected. Let’s connect the arrows as shown in the figure below,
complete the program and then write it to the robot for execution.

 According to the explanation above, you will be able to create a program for moving
the motors and LEDs as you desire. However, according to the explanation above, only
one-way program from ”Start” to ”Exit” can be made. In the following chapter, we will
make a program for making the robot follow conditional branches using the sensors.

Before proceeding to the branch program, in order to review what you have learned so
far, challenge the following exercises.

The program for “Leave the right
LED ON and flash the left LED at
intervals of 1 second” is completed.

Program exercises
● Create a program in which the right LED flashes two times at intervals of 1 second and the left

LED flashes three times at intervals of 1 second.
● Write a square having each side of 30 cm in length on paper, and create a program in which the

robot traces around the square.
(Suggested answers are presented in ”Answers to the exercises” at the end of this document.)

 29

3. Creation of a program using the
sensors

 As mentioned at the beginning of this document, the robot is equipped two infrared
ray sensors on the front back. These infrared ray sensors can recognize the depth and
brightness of a ground color, and a program for ”Trace a black line drawn on a white
ground” can be executed. Such a motion of robot is called ”Line Trace”, which is widely
adopted in exercises for robot programming learning and robot competitions. In this
chapter, we will learn programming with the aim of creating a program for Line Trace
with the robot.

3-1. Check of sensor reaction
 Before starting programming, let’s check the operation of the sensors on the robot.
First, connect the robot to PC and see ”Sensor Area” in the left part of the window. If you
have a USB extension cable, use the cable to connect the robot. As briefly explained
about installation and checking of operation in the Introduction, the current sensor
values of the robot are displayed in the Sensor Area.

Connect the robot to PC and
check the sensor values.

 30

If a USB extension cable is used to connect the robot, hold up the robot, cover the sensor
with a finger and release the finger repeatedly. At the same time, observe the value for
the sensor in the Sensor Area and check to see how the values change by covering the
sensor with a finger or releasing the finger from the sensor. It is expected that the
sensor value decreases when the sensor is covered with a finger, while it increases when
the finger is released from the sensor. Take notes on the approximate values in the
respective states.

Cover the sensor with a finger and check to see if the
value is changed. At this time, take notes on the change of

values.
●Finger comes near the sensor: The value decreases.

●Finger gets away from the sensor: The value increases.

 31

3-2. How to use Branch
 Here, programming using branches will be explained. To begin with, as an exercise,
let’s create a program in which ”the left LED is lighted up when the left sensor is
covered with a finger and it goes off when the finger is released.”

 First, let’s use the command for branch using the sensors. When a program is
currently being created, click ”File”→”New Creation” on the menu or click the

button on the tool bar to start creation of a new program.

 Next, as shown in the figure below, add two ”left LED” commands and one ”Branch”
command into the Program Area. The green rhombic block is for a ”Branch” command.。

Add two left LED commands.

Add one Branch command.

 32

 Setting of Branch command requires a long and detail explanation, and it will be
explained in the next section. Here, setting of other commands and connection of arrows
will be made.

Both of the left LED commands added to the Program Area are initially set at ”Turn
ON”. In this program, the LEDs are turned on and off depending on the sensor response.
Set ”Turn OFF” for one of two left LEDs.

 Next, connect the Branch arrow to the left LED command. All action blocks that were
used in the explanation so far had each only one arrow, but a Branch block has two
arrows. When a program is executed, the robot will determine which arrow should be
followed depending according to the predetermined condition. Now, as shown in the
figure below, connect the blue square arrow to the LED set at ”Turn ON” and the red
square arrow to the LED set at ” Turn OFF”, respectively.

 After that, the arrows of the left LEDs must be connected. In the program created in
the previous chapter, the arrow was connected to ”Exit”. In this program, the LEDs
need to be turned on and off depending on change of the sensor status. Therefore, after
proceeding from a branch to either command, it is necessary to return to the branch and
re-check the sensor status.

For one of left LED
commands, set ”Turn OFF”.

Connect the blue arrow to
the LED set at ”Turn ON”.

Connect the red arrow to the
LED set at ”Turn OFF”.

 33

 Now, connect the arrows of LED commands to the Branch commands as shown in the
figure below.

 When arrows are connected, they overlap each other and the program becomes very
hard to read. Therefore, drag the ● mark located at a midpoint on the arrow with the
mouse to move the position of the arrow. Thus, by moving the arrows so that they do not
overlap each other as shown in the right figure below, the program becomes very easy to
read.

 In addition, let’s connect the arrow from ”Start” to the Branch. Now, the arrows have
been connected. Next, setting of the condition of the branch will be learned.

Connect the arrow
of LED to the

Branch.

Connect the arrow of
LED to the Branch.

The Branch and LED
operation is repeated.

Drag the ● mark
on the arrow.

The arrows are not
overlapped and easy

to read.

Connect the arrow
from ”Start” to the Branch.

 34

 For the current program, the condition that “in what state of the sensor the LED
turns on or off” has not been set, which is most important. If the condition is set, the
program is completed. How to set the condition, together with how to set in the Setting
Area for branch will be explained below.

 First, click a command for branch in the Program Area and check the Setting Area.
In the Setting Area, the items as shown below will be displayed.

 Setting items for a branch command are included in three lines. All the three items
need to be set. On the first line, select the ”Sensor to be applied to the condition”. In this
program, the ”Left sensor” should be selected, which has been set initially. If the right
sensor is applied, select the ”Right sensor”.

Items for a branch command
displayed in Setting Area

Select the sensor to be applied to the condition.
Since the ”Left sensor” has been set initially, no

selection is needed.

 35

 2 On the second and third lines, the ”constant to be compared with the sensor
value” and the ”kind of condition” should be set, respectively. In this program, what
should be input here are as follows: Set ”60” on the second line and ”smaller value?” on
the third line, as shown in the figure below.

Next, let’s write the program with the condition into the robot and execute it to see if
the condition set above will work properly. When the left sensor of the robot is covered
with a finger, the left LED turns on, and when the finger is released, the LED goes off.

On the second line, input the
constant to be compared with the

sensor value,

On the third line, set the kind of
condition, which is “smaller

value?”. Leave as it is.

Cover the left sensor with a finger
and release the finger.

When the left sensor is covered
with a finger, the left LED turns
on, and when the finger is released,
the LED goes off.

 36

From now, let’s check how this program is executed in the robot sequentially. In the
above-mentioned procedure, the sensor of the robot was covered with a finger and the
value was observed. The sensor value became very small when the sensor was covered
with a finger, while it became large when the finger was released from the sensor. On
the assumption that the sensor value is “around 0 when the sensor is covered with a
finger” and “around 160 when the finger was released”, let’s see the sequence of
program in each case.

First, when the sensor value is around 0, ”0 (sensor value)<60” holds. Therefore,
proceed to the ”Yes” arrow. Ahead of the ”Yes” arrow, the left LED ON command exists.
In this way, the program in which “the LED turn on when the sensor is covered with a
finger” is executed.

On the other hand, when the sensor value is around 160, ”160 (sensor value)<60”
holds. Therefore, proceed to the ”No” arrow. Ahead of the ”No” arrow, the left LED OFF
command exists. Thus, the program in which “the LED turn on when the sensor is
covered with a finger” is executed. In this way, the program in which “the LED turn off
when the finger is released from the sensor is executed.

Furthermore, after the left LED is ON/OFF, the arrows are connected to the branch
again. Therefore, the program will be repeated permanently, like reading the sensor
value, proceeding to either arrow, and returning to the branch...

When the condition is ”smaller value?” relative to ”60”:

Cover with a finger =
The sensor value is 0.

Release the finger.
= The sensor value is 160.

The condition holds. Proceed to ”Yes”.
The left LED turns ”ON”.

The condition does not hold. Proceed to ”No”.
The left LED turns ” OFF”.

 37

Now, the program operation was checked and the mechanism was understood. Do the

following exercises to check to see how the program works:

● Check to see how it works when the branch condition is changed to ”larger value?”.
● Check to see how it works when the arrows of “Yes” and ”No” are connected in reverse.

 38

3-3. Programming for Line Trace
 Let’s make a program for Line Trace using the program created so far. First, delete
both of the left LED commands. Place the mouse cursor on the command to be deleted
and right-click. The menu appears. Click ”Delete” on the menu. Or, to delete a command,
you may click the command to be deleted and press the Delete key on the keyboard.
Return the branch command setting to ”the left sensor is, relative to 60, smaller
value?”.

 Place the course for Line Trace included in the product as shown in the figure below.
After placing the course, when a USB extension cable is used for connection, check the
sensor values “when the robot sensor is placed directly on the line” and “when the robot
sensor is placed off the line”, respectively, in the same manner that the sensor values
were initially checked.

 Check the value when the
sensor is placed on the line.

Check the value when the
sensor is placed off the line.

Check to see if the sensor values become as follows:
●Sensor value when the line cannot be detected: Smaller
●Sensor value when the line can be detected: Larger

Right-click the command to
be deleted and click ”Delete”

on the menu.

Delete both of
the left LED
commands.

Return the branch
setting to the initial

setting.

 39

Instead of the deleted left LED commands, let’s add commands for the motor. There

are four kinds of commands for the motor to operate. Which commands should be
selected for this program? The principle of Line Trace will be explained below, and let’s
think about it.

 Line Trace is based on the premise that ”the robot starts in the state where it is
straddling over the line.” In this state, ”neither the right sensor nor the left sensor is
detecting the line.” If the line is straight as shown in the left figure below, you will see
that the robot can follow the line just by moving straight.

How about if the robot reaches a corner of the course as shown in the center figure
below? If the robot keeps going straight, it will deviate from the line. However, it never
passes on the corner but the left sensor detects the line. Accordingly, by making a
program ”Turn left when the left sensor detects a line,” the robot can move without
deviating from the line.

As shown in the right figure below, if the robot turns slightly at the time of start, the
robot will deviate from the line when it keeps going straight. Then, by making a
program ”Turn left as soon as the left sensor detects a line,” the robot can return to the
line.

If the line is straight,
the robot can trace

the line by just
moving forward.

When the robot reaches a
corner, the robot turns

left as soon as when the
left sensor detects a line.

Even if the robot
deviates from the

course, it can return
to the course by the

program “Turn left as
soon as the left sensor

detects a line.”

 40

 Now, as explained above, add the commands ”Move forward” and ”Turn left” to the
Program Area. Then, connect them as shown in the figures below.

 Let’s check if the program created so far is correct before actually moving the robot. In
the same manner as the previous program, check how the robot moves ”when the line
can be detected” and ”when the line cannot be detected”, respectively. If no problem is
found, let’s write the program into the robot and actually move the robot. Start
moving ”counterclockwise” on a course.

Add the
command ”Mo
ve forward”.

Add the
command ”T

urn left”

Connect “Yes”
to ”Move
forward”.

Connect “No”
to “Turn left”.

Connect the arrows of “Move
forward” and ”Turn left” to

the branch.

When the condition is, relative to ”60”, “smaller value?”:

The line cannot be detected=
The sensor value is 10.

The line can be detected=
The sensor value is 100.

The condition is satisfied.
Proceed to ”Yes”.

The robot ”Moves forward”.

The condition is not
satisfied. Proceed to ”No”.

The robot ”Turns left”.

Move the robot
counterclockwise.

 41

 After the program is executed, the robot deviates from the line or turns too much and
cannot do the Line Trace well. The flow of program is correct, but why doesn’t it operate
properly? In this case, there is a problem in the command setting for the motor.
 The command for the motor explained so far is ”Operate for the number of seconds set
in the Setting Area”. Looking over the created program again, it is found that ”Operate
for 1.5 seconds” is set for both ”Move forward” and ”Turn left”. In this program, the
motor operates for 1.5 seconds every time the sensor detects a line. As a result, the
sensor overlooks a curve as shown in the center figure below or the robot turns left for
1.5 seconds after the line is detected as shown in the right figure below.

 To solve the problem, we could take a measure of “shortening the setting time of 1.5
seconds”, but when the shortest time ”0.0 seconds” is set, the robot will not move. This is
because ”Move forward or turn for 0.0 seconds” means ”Do not move forward or do not
turn”. Then, when ”0.1 seconds” is set, the motor will move but the sensor will be
overlooked for 0.1 seconds.
 The best solution is to ”check the sensor while running the motor” without setting the
time. For the setting procedure of this, we already learned about a similar procedure
when learning the command settings for LED. At that time, when the commands ”Turn
ON” and ”Turn OFF” for LED were selected, the robot could proceed to the next
command with ”leaving the LED ON” or ”leaving the LED OFF”. Similarly, for the
motor, there are commands to proceed to the next command while ”leaving the motor
running” and ”leaving the motor off”.

1.5sec

Passes through the
corner during

moving forward.

1.5sec 1.5sec

Turns too
much.

According to the
setting, ”Move forward”

or ”Turn left ” for 1.5 seconds.

If this is selected, the robot will
"proceed to the next command while

leaving the motor running”.

 42

 Change the commands Move forward for “1.5 seconds” and Turn left for “1.5 seconds”
to Move “Forward” and Turn "Left” as shown in the left figure below. After change, write
the program into the robot and execute it. Check to see if the robot can do Line Trace
properly.

Now, the program operates properly. Then, let’s make a program to do Line Trace
using the right sensor. The program can be made by partly modifying the program for
the left sensor. There are three hints: ”To use the right sensor”, ”To reverse the turning
direction” and ”To run the robot clockwise on the course”. (Suggested answer is
presented in ”Answers to the exercises” at the end of this document.)

Set at “Move
forward”.

Set at “Turn
left”.

The robot moves seeing
the line and never
deviates from the line.

In a case where the robot deviates from the line after the settings of the
program are corrected, the motor speeds may be too high. In this case, reduce
the speeds for both motors by the same value.

 43

3-4. Line Trace using the right and left sensors
 In the programs which were created so far, either the left sensor or the right sensor
was used. Therefore, the robot moved properly only either clockwise or counterclockwise.
By making a program in which both the right and left sensors are used at the same time,
the robot can do the Line Trace moving in either direction on a course. Now, let’s make a
program in which both sensors are used.

 First, create the programs for Line Trace using the right and left sensors, respectively.
The program for Line Trace using the left sensor is the same as the program made
previously. To make a program for Line Trace using the right sensor, change the ”Left
sensor” at the branch to the ”Right sensor” and the ”Turn left ” command to the ”Turn
right” command, respectively. For the ”Move forward” and ” Turn right or left”
commands, do not set the number of seconds (do not select ”...for ?? sec.”).

 Modify the above programs to make a program for Line Trace using both sensors.

Program for Line
Trace using the left

sensor

Program for Line
Trace using the right

sensor

 44

The present program is structured so that the flow goes from one sensor (branch)
to ”Move forward” or ”Turn” and vice versa. First, let’s modify the program so that it
goes ”Check one sensor and proceed to ”Move forward” or ”Turn”, and then proceed to
the next sensor (branch)”. Connect the arrows of ”Move forward” and ”Turn left ”
extending from the branch of the left sensor to the branch of the right sensor. At the
same time, connect the arrow of ”Start” to the branch of the left sensor.

By changing the connection of the arrows, the flow that ”Check the left sensor, and
then check the right sensor” has been made. For the right sensor, however, the present
flow is structured so that the operation goes from the right sensor to ”Move forward”
or ”Turn right” and vice versa. Connect the arrows of ”Move forward” and ”Turn right”
extending to the branch of the right sensor to the branch of the left sensor.

Now, the program for checking both right and left sensors has been made. Write the

program into the robot and execute it

After execution of the program, the robot will not move properly. It moves forward

without following the line even if it sees the line. Apparently, the program is correct, but
there seems to be a problem somewhere.

Connect the arrow of “Start” to
the branch of the left sensor.

Connect the arrows
of “Move forward”
and ”Turn left” to
the branch of the

right sensor.

Connect the arrows of
“Move forward” and ”Turn
right ” to the branch of the

left sensor.

 45

Let’s check to see what is wrong with the program by following the sequence of the
commands.

First, concerning the case where both right and left sensors do not detect the line, the
first branch of the left sensor is the same as that of the correct program, and ”Move
forward” is selected correctly. The next branch of the right sensor is also the same as
that of the correct program and ”Move forward” is selected correctly. At both branches,
the same command ”Move forward” is selected, the robot moves forward properly.

Next, concerning the case where the left sensor detects the line, at the branch of the

left sensor, the command ”Turn left” is correctly selected. Then, at the branch of the
right sensor, since the right sensor does not detect the line, ”Move forward” is selected.
At this time, this ”Move forward” command and the previous ”Turn left” command
conflict with each other. In fact, this is the cause of the problem. At the ”Turn left”
command, the robot tries to stop the left motor, but the motor will not stop immediately.
In the meanwhile, the ”Move forward” command is given and soon the robot will run the
left motor which was to stop. As a result, the robot keeps moving forward.

On the other hand, in the case where the right sensor detects the line, at the branch

of the right sensor, ”Turn right” is correctly selected. But the left sensor does not detect
the line, and therefore, the “Move forward” command selected at the previous branch of
the left sensor conflicts with the ”Turn right” command. At the ”Turn right” command,
the robot tries to stop the right motor. But the program goes round and at the next
branch of the left sensor, ”Move forward” is selected. As a result, the right motor runs
and the robot will keep moving forward.

 46

When both right and left
sensors do not detect the line:

When only the left sensor
detects the line:

When only the right
sensor detects the line:

At both branches, ”Move
forward” is selected and the
commands do not conflict.

“Turn left” and ”Move
forward” commands

conflict.

“Move forward”
and ”Turn right ”

commands conflict.

 47

As a result of checking the sequence of the program, it was found that “if the
commands at two branches conflict, a problem occurs. However, in order to check the
right and left sensors, the operation must be programmed so that two branches are
passed through. How can we create a program in which ”two commands do not conflict”
and ”both sensors can be checked”? The answer is to make a program in which ”after the
operation for one of the sensors =“Turn” command is completed, the robot proceeds to
the next sensor”.

Now, let’s change the connection of the arrows in the present program as shown in the
figure below. Connect the arrow of “Turn left” to the branch of the left sensor, and the
arrow of “Turn right” to the branch of the right sensor, respectively. After that, execute
the program.

Connect the arrow of “Turn left”
to the branch of the left sensor.

Connect the arrow of “Turn right”
to the branch of the right sensor.

 48

In this program, when the right and left sensors detect the line, the robot will ”keep
turning till the line goes out of sight for the sensor that detected the line”. When the
sensor is not detecting the line, the flow goes to the next sensor. Now, ”Turn” and ”Move
forward” commands do not conflict and the robot can do the Line Trace properly.

The robot keeps turning left
till the line goes out of sight
for the left sensor.

The robot keeps turning
right till the line goes out of

sight for the right sensor.

The robot can do the Line
Trace in either direction.

 49

With the program which has been created so far, the robot can do the Line Trace on a
sequence course as shown in the figure below. Draw a line with a black magic marker on
white paper or print a course drawn on PC and try running the robot on the course. It is
important to draw a line as thick as possible (about 1.5 to 3 cm) deeply and clearly. If the
motor speed is too high, the robot may deviate from the course soon. In such a case,
adjust the motor speed to a lower rate.

 This program can be used as a base for the Line Trace Course for advanced-level
users which is contained in the CD provided with the product, but some parts require a
little more complex programming. Especially, the “part of light-colored line” and ”part
with overlapped lines” require more detailed programming.

For the “part of light-colored line”, check the sensor value at the part, and change the

setting value at the branch command so that the part is detected as a line. For the ”part
with overlapped lines”, make a program for ”the case where both sensors detects the
lines”. In this case, the robot does not deviate the line if it ”Moves forward”. Therefore,
make a program as such.

A course of your own making may
be used for Line Trace. Clearly
draw a line of 1.5 to 3 cm thick.

For the ”part with
overlapped lines”, it must

be programmed so
that ”the robot moves

forward when both sensors
detect the line”.

For the “part of light-colored
line”, it must be

programmed so that the
sensor value does not exceed
the value at the branch even

on the light-colored line.

Check and change the setting value at
the branch command so that the part of
light-colored line is detected as a line.

Neither of the
sensors doesn't
detect the line.

Only the left sensor
detects the line.

Both sensors
detect the line.

 50

3-5. RANDOM command
 Another command to branch a program is ”RANDOM”. Differently from a branch
using sensors, no predetermined condition is set for a Random command. During
execution of the program, the robot will determine by itself to which way it moves at the
branch. A RANDOM command can be used in ”roulette” where an accidental element is
required or ”exploration” and ”Sumo” where incorporation of unintentional variety of
motions are desired, for example.

The RANDOM command is displayed in the Icon Area and Program Area as shown in
the figure below, respectively. No condition is set for the RANDOM command, and there
is no setting item in the Setting Area.

 Now, let’s create a program using RANDOM in which ”the right and left LEDs are
lighted up at RANDOM for 1 second, respectively,” as a sample. Add one RANDOM
command and each one of the right and left LED commands and connect the arrows as
shown in the figure below. For the LED commands, set ”Light up for 1.0 second”,
respectively. After the program is created, write the program into the robot and execute
it.

 Basically, the RANDOM command has two options ”A” and ”B”. However, by
connecting a number of commands, options can be increased. For example, as shown in
the figure below, connect one RANDOM to further RANDOM commands, resulting in
four options.

Set at “Light up for
1.0 second”.

Left LED Right LED

By connecting one RANDOM
command to further RANDOM

commands, options can be increased.

 51

4. Creation of program using LOOP
 As an example, a “program to flash LED 100 times at intervals of 1 second” will be
created. According to the method explained so far, two commands, ”Leave the LED ON
for 1 second” and ” Wait for 1 second”, must be placed each by 100 pieces alternately.
However, such a programming takes a lot of time and labor. Also, such a long program
cannot be recorded into the robot body. Therefore, the “LOOP” command is used to
repeat the same command over and over again.

 The “LOOP” command is displayed in the Icon Area and the Program Area as shown
in the figure below.

For the LOOP command, two action blocks are added at one time. They
indicate ”Start of LOOP” and ”Exit of LOOP”, respectively. Just as a program is
executed from ”Start” to ”Exit”, LOOP has a start and an end and the commands
between them are repeated for the set number of times. If arrows for the Start of LOOP
and End of LOOP are not be connected properly, the execution of commands are not
repeated properly.

 In the Setting Area, the display for LOOP is as shown in the figure below. The
number of times can be set for LOOP, which is 0 to 255. If the number of times for
LOOP is set at 0, the program will go ahead without executing the commands for LOOP
at all. To repeat the program endlessly, select ”Repeat endlessly (infinite number)”.

Start of Loop

End of Loop

Set the number of times for LOOP
The number of times is within 0 to 255.

Select this to repeat
endlessly.

 52

 Now, let’s create a program using the LOOP command. Create a program as shown in
the figure below and execute it. The robot will repeat the motion of ”Move forward for
1.5 seconds”→” Turn right for 0.5 seconds” three times, and the program will end. By
changing the number of times for LOOP in the Setting Area, the motion will be repeated
by the set number of times.

 Up to seven LOOP commands can be used in one program. By combining multiple
LOOP commands, more complex loops can be programmed. In order to execute the
LOOP command properly, however, it is important to understand how to connect arrows
well.

Sample program for LOOP
“Move forward”→”Turn right” is

repeated 3 times.

In one loop, another
loop can be

incorporated.

Multiple loops can be
connected.

 53

 When a loop is connected as shown in the figures below, a warning message will be
displayed when the program is written into the robot.

In either case, the major causes are that ”the program ends before the loop ends”
or ”the start and the end of the loop are connected in a wrong combination.” If there is a
problem in LOOP, the action blocks in the order from the start of the program to the
point having the problem are displayed in different colors. Using it as a hint, solve the
problem.

NG:The arrow is connected
directly into the LOOP without

passing through the start of

NG: The program ends without
passing through the end of LOOP.

NG:At the midway of one loop, the
arrow breaks into another loop.

NG: An arrow which has not been connected
at the midway of one loop exists.

 54

 For reference, the connection of arrows with which “the program does not end in a
loop” as shown in the figure below has no problem. With the program shown in the
figure below, ”the program will end when the sensor reacts 5 times.”

It proceeds to the next block when the
left sensor value exceeds 60.

After proceeding 5 times, it goes out
of the loop and ends.

 55

5.Using Simulator
 With Simulator function it will be able to learn programming in case of no real
machine. Please note that the virtual robot is different in motor speed and the
sensitivity of sensors from the real one, so the performance is not always correspond
with each other.

5-1.Running Simulator
 Click tool bar button to open Simulator Window. A program is created in Program
area same as the real robot. Simulation works in Simulator Window

5-2. Explanation of Simulator window
 The window of this software is roughly divided into an upper part and a lower part. At
the top of the window, the ”menu” and ”toolbar” are provided. The menu refers to the
character strings directly below the window title, which is used for starting simulation
and selection simulation course. At the lower area it is virtual space, it appear virtual
robot and course.

Menu

Tool bar

Virtual Robot

Course
Simulation

Field

Click button, Open
Simulator Window.

Simulator
Window

 56

 The Virtual robot body is equipped with interfaces including motors, sensors and
LEDs same as BeautoRacer. The location and name of each equipment are as shown
below.

5-3.The operation of Simulator
Click button to start Simulation, and the virtual robot become blue and start the

created program. After the program is executed till the end, the robot stops.
 In the program is excuted, A red frame is displayed around the block that the virtual
robot currently executes.

Left sensor
Detects lines

Right LED
Turns on and off on a
program.

Left LED
Turns on and off on a
program.

Right sensor
Detects lines

Click button to start
Simulation

Virtual robot becomes
blue in execution.

A red frame is displayed
around the block currently
being executed by virtual
robot

 57

 Click button to end Simulator. Click button to pause. When the virtual robot
pauses, the robot become yellow. Click button again to restart the program.

Clicking button Before executing the program, the virtual robot goes back to the
startp osition.

When the virtual robot does not become blue(not executes), you can move the virtual
robot by dragging and change the direction of virtual robot by right-clicking the robot.

When changing the position and the direction of the virtual robot, it does not measure
the time. Click button to restart for measuring time.

Click button to pause.
Click button again to restart.

Click button to end Simulator,click
again the virtual robot goes back to
the start position.

When the virtual robot pauses,
the robot become yellow.

Move the virtual robot by dragging
Change the direction of virtual robot by

right-clicking the robot

When measuring time, Click button to goes
back to start position.

 58

5-4. Adjustment of the virtual robot motor speed
 The virtual robot motor speed can be set by the similar way of the real robot. In the
menu at the top of the window, click “Setting” → “Setting of the virtual robot motor
speed…”, and the dialogue for setting opens.

5-5. Checking the Sensor values
When opening Simulator window, sensor values present in sensor area. There are two

sensors at the front ‘’L’’ ‘’R’’ of robot. That can sense the color shading. The Sensor value
indicates 10 on the white area and 160 on the black area.

click “Setting” → “Setting of
the virtual robot motor speed…”

Directly input a
numerical value.

Drag the tab with
the mouse.

Click OK to confirm
the entry.

Click close to stop the
change.

Opening Simulator window,
sensor values present in sensor
area

Sensor positions are same
as the real robot.

 59

5-6.Menu and Toolbar in Simulator Windows
”Menu” and ”toolbar” are provided in Simulator Window. The menu refers to the

character strings directly below the window title, which is used for starting simulation
and selection simulation course. Each functions are the followings.

Menu and Toolbar in Simulator Windows
 Execution
¾ Start() = Executing the program
¾ Stop() = Stop the executing the program. When not executing the program,

set the virtual robot at the initial position.
¾ Pause() = Pause the program. Click again and restart the execution.

 Settings
¾ Zoom out = Switch viewpoint to watch the whole course.
¾ Zoom in(Twice) = Magnify an image twice
¾ Zoom in (Four times) = Magnify an image four times
¾ Standard Play = execute the program at the standard speed.
¾ Play slowly= execute the program at the slow speed.
¾ Play more slowly= execute the program at the much slower speed.
¾ Check records = Present the fastest record.

・ Select the course

¾ Choose the course from registered courses.

 60

5-7. Select the course
 It is possible to select the course from 10 registered courses and try the line trace
program in your PC. This Simulator determines whether the branch block is used,
whether the virtual robot run in the correct path and so on. You can record the your
fastest time.
 Changing the course, click ‘’select the course’’ and choose the course that you want to
try.

 Each course has course-based task. It is possible to accomplish each course by
referring ‘’2. How to create a sequence program”, “3. Creation of a program using the
sensors”, “4. Creation of program using LOOP”.

Click ‘’select the course’’ and
choose the course

Accomplishing the task, simulator
record your time.

Failing the task、the reason
appears in the window.

 61

5-7-1.trying sequence program course（course1/2）
 At the course1 and curse2, a task is that the virtual robot runs from start area to goal
area without entering NO Trespassing area.

 At the course 2, it is better to use loop block.

Course 1：
Step 1(sequence)

How long is it
necessary to go straight

and turn right?

Course2：
Step2 (sequence/loop)

Try to use loop block to
make short program.

 62

5-7-2.Using sensors（course 3）
To accomplish the course 3, check the sensor value on white area and black line.

 Based on the values you checked , Make a program that is ’’
when the robot sensor is placed off the line, the robot moves straight.’’ and ‘’ when the
robot sensor is placed directly on the line, the robot stops.’’ Refer the chapter ‘’3-2. How
to use Branch ’’ .

Move the virtual robot by
dragging to check the sensor

values on the line.

Sensor values appear in
sensor area.

Determine the constant
value to distinguish

between ON the Line and
OFF the Line.

On the line, the robot stops.

Off the line, the
robot moves

straight.

Passes through the line during
moving forward 1.5sec.

What is a solution?

 63

5-7-3. Line Trace using a sensor（course 4,5）
 At the course4 and curse5, a task is that the virtual robot traces the line by using a
sensor. Course 4 is clock rotation. Course 5 is anticlock rotation. Refer the chapter ‘’3-3.

Programming for Line Trace’’ , decide which sensor should be used and make the program.

Course 4:
Clock rotation

Course 5:
Antilock rotation

As a Reference:
Using one branch

block.

 64

5-7-4. Line Trace using the sensors（course 6）
 The course 6 is a S-curve line course. The task is that robot traces the line and stops

the goal area. It is necessary to use left and right sensor, because the course has left
and right turn. This task is not easy, the chapter ‘’3-4. Line Trace using the right and
left sensors’’ will be the useful reference.

 For the goal area, make a program for ”the case where both sensors detects the Black
lines”. The one branch block enables to use one sensor. So use more than two branch
block and link them

Course 6. Using left
and Right sensors.

Stop at the goal to
detect the black area

As a reference: Using two
banch block.

Both sensors detect the
black color area.

The Left sensor:
White area or Black Line

The Right sensor:
White area or Black Line

 65

5-7-5 .Figure of 8 line trace and the advanced Line trace.(Course 7,8)
 The rest of two courses are advanced and difficult. The ”part with overlapped lines”
and the “part of light-colored line” require more detailed programming.
 To run through The ”part with overlapped lines”, apply the course6 program and
change it to ‘’Go forward when the two sensors detect black line.’’.
 For the “part of light-colored line”, check the sensor value at the part by dragging the
virtual robot and change the setting value at the branch command so that the part is
detected as a line.

5-7-6.The original course（course 9）
 The last course ’’ User setting (free.bmp)’’ is the plain field. It is possible to make an
original course by using a painting software and update a course.

Course 7: Figure
of 8 line trace Course 8. The advanced line trace

Run through
The ”part with

overlapped lines”

the “part of light-colored
line”, check the sensor value

using a painting software and
update a course

It is possible to run at
your original course.

 66

The image file of the course 9 is ‘’ free.bmp’’ file in the foldr ‘’ texture’’ of this software.
You can update this file by using painting software like Windows ‘’Paint’’ and draw a
course. (This original course can not detect your success and failure like other
courses.)

Please note the below, when you change the image file and save. If failed, the

simulator doesn’t work well. Before update the file, make backup file.

・ Do not change file name.
・ Keep the file type ’’24 bit bitmap’’
・ Keep the size of this image file 700×500 pixel

There is no limitation about colors and shapes. It is better to draw bold and deep black
line for a line trace course. One pixel is equal to 1mm. So you can reproduce the course
that you made the course on paper.

 67

6. Functions for advanced-level users
 This software has the functions for advanced-level programmers using variables and
the Memory Map to allow for various programming. while a sequence program can be
created satisfactorily according to the procedures explained so far, the functions for
advanced-level users allow you to understand programming more deeply.
 The functions for advanced-level users cannot be used only with this software
installed. In order to use the functions, the setting needs to be changed from the setting
dialogue. The setting dialogue for the functions for advanced-level users can be opened
by clicking ”Setting”→” Setting of functions for advanced-level users” on the menu.

 On the dialogue, 5 setting items are displayed. By clicking, place or remove the
checkmark in the checkbox to change the setting. Click ”OK” on the dialogue, and the
new setting will be applied. Hereinafter, the details of each setting item will be
explained.

6-1. Wheel control with setting of speed and turning rate
 The items which are easy to set will be explained first. By placing a checkmark in the
box for ”Use the wheel control block with setting of speed and turning rate”, the
command with which any motor speed can be set becomes enabled. The motor speed
under the initially usable commands for the motor such as ”Move forward” and ”Turn”
was always constant. At that time, the speed could be changed by setting the motor
speed, but in one program, the robot always moved at the same speed. On the other
hand, this function allows you to change the motor speed freely by command in one
program.

Click ”Setting”→” Setting of
functions for advanced-level users”.

Dialogue for setting the use of the
advanced-level functions.

 68

By placing a checkmark in the box for ”Use the wheel control block with setting of

speed and turning rate” and clicking ”OK” on the dialogue, the buttons as shown below
will be added into the Icon Area.

 Two buttons shown in the left figure below are for the commands ”Move right
forward” and ”Move left forward”. As extensions of the ”Turn right" and “Turn left”
commands, these are used to set “at what rate the robot turns”. The items to be set for
these commands in the Setting Area are as shown in the right figure below. Most of the
items are the same as those for the motor command previously explained, but the
setting item ”??%” has been added.

 For “??%”, enter a value of 0 to 100. “The smaller the value is, the more straight the

robot moves” or ”the larger the value is, the harder the robot turns.”
The other setting items are just the same as the previously explained motor command.

When ”Move for ?? seconds” is selected, the robot moves for the designated time.
When ”Move left frontward” or ”Move right frontward” is selected, the robot proceeds to
the next command with the motor running.

Three buttons
are added.

The setting item ”??%”
has been added.

”Move right forward” and ”Move
left forward” commands

[0%]
Moves straight.
(Same as "Move

forward”)

[30%]
Turns slightly.

[70%]
Turns hard

[100%]
Turns

(Same as "Turn”)The larger the set value is, the harder it turns.

 69

 The button shown in the left figure below is for the ”wheel control” command. As
extensions of the ”Turn right" and “Turn left” commands, this command is used to set
any given speeds for both right and left motors. The setting items for this command in
the Setting Area are as shown in the right figure below.

 The setting items ”??%” for the wheel control command are for the right and left
motor speeds. For “??%”, enter a value of 0 to 100. The larger the value is, the higher the
motor speed becomes. By entering the same value for the right and left motor speeds,
the robot can move forward at a given speed, “move right forward” or “move left
forward” at a given speed, or turn at a flexible angle.

Left 0%: Right 0%
Does not move.

(Same as “Stop”)

Left 50%: Right 50%
Moves slowly.

(At a 1/2 speed of that of
“Move forward”)

Left 100%: Right 100%
Moves fast.

(Same as “Move forward”)

Left 0%: Right 10%
Turns slowly.

Left 70%: Right 40%
Slightly turns while

moving forward.

“Wheel control”
command

Set the right
motor speed.

Set the left
motor speed.

 70

6-2. Display of Memory Map
 By placing a checkmark in the box for “Display the content of Memory Map”, the
Memory Map” including the internal values of the robot appears on the screen as shown
in the figure below.

“Memory Map” displays various values recorded in the microcomputer of the robot.

In the robot, various values which appear in the program are saved in the
microcomputer. ”Motor speed”, ”right and left sensor values” and ”LED’s ON/OFF
status” which appeared previously are also recorded as values. These values are
changed by the robot at appropriate times during operation of the robot or execution of a
program. When communication is conducted between the robot ant PC with the
Memory Map being displayed, the latest values for Memory Map are loaded from the
robot at regular intervals and the Memory Map on the screen is updated.

 Furthermore, using the ”Arithmetic” command described later, values can be written
into any given items in the Memory Map from the program. Any change, such as
activation of the motor or LED, appears depending on the items into which values were
written. There are some items for which only the robot changes values. Each item in the
Memory Map is explained as follows:

 “Motor speed” indicates the current motor speed. The larger the value is, the faster
the motor runs. When it is 0, the motor does not run. When a command such as “Move
forward” appears during execution of the program, the robot changes this value to
activate the motor. You may change it to any given value from the program to activate

The Memory Map of the
robot are displayed on

the screen.

When PC and the robot are
connected, the latest values are

loaded from the robot and displayed.

After closing the Memory
Map, it can be displayed again
by “Display of Memory Map”.

 71

the motor.

“Gain of the motor” indicates the motor speed. As in the case of the motor speed, the

larger the value is, the faster the motor runs. The value here is displayed within 0 to
255. The value for this can be changed only from the ”Setting for motor speed” and it
cannot be changed from the program.

“Left sensor”, ”Right sensor” and ”Sensors ③ to ⑥” indicate the robot sensor

values. The robot has only two sensors, but up to four more sensors can be added
separately. In that case, the sensor values for the added ”Sensors ③ to ⑥” are
displayed. Even if nothing is connected to the sensors, the values may change by
themselves due to instability of input. Also, since the values here are constantly
updated by the robot, they cannot be written form the program.

“LED” shows the ON/OFF status of the right and left LEDs. The ON/OFF status is

displayed by a value of 0 to 3. “When it is 0, both of the right and left LEDs are
OFF”, ”when it is 1, only the left LED is ON”, ”when it is 2, only the right LED is
ON”, ”When it is 3, both of the right and left LEDs are ON”. The robot may change the
values by itself and you may change it to any value you like on the program.

“Variable a to h” indicate variables which can be used in the program. ”Variable” is

provided so that the user can freely write values to be used in the program, and the
robot never change the values by itself. By making a program that “Record the sensor
values at intervals of 1 second in the order of variables a to h”, the sensor values for the
last several seconds can be recorded in the robot.

6-3. Use of Arithmetic block
By placing a checkmark in the checkbox for “Use the Arithmetic block”,

the ”Arithmetic” command for rewriting the Memory Map can be used. The button as
shown in the figure below is added in the Icon Area.

“Arithmetic” command

 72

 The “Arithmetic” command is displayed in the Program Area as shown in the figure
below. In the Setting Area, it is displayed as shown in the right figure below.

 A number of items are included in the Setting Area. Each of them will be explained.
On the first line, the item in the Memory Map into which a value is substituted is
selected. It can be selected from ”Variable a to h”, ”LED” and ”Right and left motor
speeds”.
 At the left field on the second line, how to substitute a value into the Memory Map is
selected. By the Arithmetic command, not only a simply predetermined value is set, but
four operations of arithmetic, ”Add”, ”Subtract”, ”Multiply” and ”Divide”, can be
conducted for the current value displayed in the selected item of the Memory Map .

 For the specific operation of the Arithmetic command, a program example will be
described below. This program is to ”calculate the average of the right and left sensor
values. ”The average of the right and left sensor values” is obtained by the calculation
of “(right sensor value + left sensor value) ÷ 2“, but by the Arithmetic command, the
whole calculation cannot be conducted at one time. Furthermore, as explained in the
description about Memory Map, values in the items for ”right and left sensors” cannot
be changed. Therefore, substitute the right and left sensor values into the Variable a
and Variable b. Then, add the variable b to the variable a to obtain the value for (right
sensor value + left sensor value)”. Finally, divide the variable a by 2 and obtain the
average.

“Arithmetic” command in
Setting Area

Set the item in Memory Map into
which a value is substituted. Set how to substitute a value.

(Substitution and four
arithmetic operations)

Select a value to be used for
rewriting.

For a constant, enter a
value from 0 to 255.

 73

1. Substitute the
left sensor value
into Variable a.

2. Substitute the
right sensor value

into Variable b.

3. Add Variable b to
Variable a.

4. Divide Variable a
by 2.

 74

 A value substituted into the item for Variable is an integer of ”0 to 255” and a
decimal or negative value cannot be substituted. When the calculation result is a
decimal value, discard all digits to the right of the decimal point. When it is a negative
value, such as -1 or smaller, it is corrected to 0. When it is 256 or larger, it is corrected to
255.

6-4. Branch command for advanced-level users
 When a checkmark is placed in the checkbox for “Use the Arithmetic block”, the
setting items for the branch command will be slightly changed. With this function
enabled, it is found that the setting items for the branch command in the Setting Area
are as shown in the figure below.
 The major changes are that ”on the first line, the items other than sensors can be
selected” and ”for a comparison value, the items in the Memory Map other than a value
of 0 to 255 can be selected.”

 In the case of a programs shown in the figure below, for example, comparison is made
between the right and left sensor values and the motor having a larger sensor value will
run.

Set an item in Memory Map as
a reference for comparison. A

value other than a sensor
value can be set.

An item in Memory Map can
be selected as a value to be

compared.

 75

6-5. Judgment for overlap of blocks
The item “Enable the overlap judgment for blocks” is selected to prevent action blocks in
the Program Area for overlapping each other. In the checkbox for this item, a checkmark
has been initially placed. By removing the checkmark, action blocks can be overlapped
each other.

 When a program is created using many action blocks, disable this function to
facilitate programming.

6-6. Check of LOOP connection
 The item “Check the connection of LOOP blocks” is selected to display a warning
when a program to be written has wrong connection of arrows for LOOP action blocks in
the Program Area. In the checkbox for this item, a checkmark has been initially placed.
By removing the checkmark, a warning is not displayed when the program is written
into the robot even if the arrows for LOOP command have not been properly connected.

A warning is not displayed
when the program is written

into the robot even if the
LOOP command has not been

properly connected.

Blocks can be brought into contact
with or overlapped each other.

 76

7. Convenient functions for
programming
 The operation procedures of this software such as move, delete and copy of action
block as well as functions on the menu/toolbar will be explained below. Some of the
functions were already explained, but it is recommended to review them here.

7-1. Move of action block
 To move an action block, click the action block with the mouse and drag it. The action
block moves along the grid on the background.

 If an action block overlaps another action block during moving, the action block is
displayed in dotted blue lines as shown in the figure below. Action blocks cannot be
placed as they overlap each other. Therefore, when the mouse button is released, the
blocks are flipped away and positioned so that they don’t overlap each other. (However,
on the edges of Program Area or if many action blocks exist in the Program Area,
overlap of blocks may occur.)

Drag the action block with the
mouse to move it.

If an action block overlaps
another action block, the

action block is displayed in
dotted blue lines.

By releasing the mouse button
here, they are flipped away to
be placed without overlapping.

 77

7-2. Delete of action block
To delete an action block form the Program Area, put the mouse cursor on the action

block and right-click. Then, the menu appears. From the menu, select ”Delete”.

 Or, you may delete an action block by clicking the action block to be deleted and
pressing the Delete key on the keyboard.

7-3. Copy/Cut/Paste of action block
Right-click on an action block, and the menu appears. By selecting ”Copy” from the

menu, the action block can be copied. By selecting ”Cut” from the menu, the action block
can be deleted after copy.

After copying an action block, right-click on the Program Area, and the menu appears.
By selecting ”Paste” from the menu, the copied action block can be pasted in the
Program Area.

* For the action blocks ”Start” and “Exit”, Copy/Cut/Paste cannot be used. Up to 7 action
blocks for LOOP can be pasted.

Right-click on the action block, and the
menu appears. Select ”Delete”, and the

action block is deleted.

Right-click on the action block, and the
menu appears. By selecting ”Copy”, the

action block is copied.

Next, by selecting ”Paste” from
the menu, the copied action block

is pasted.

“Pasted"
action block

 78

7-4. Selection of action block
 By clicking the area without action block in the Program Area and dragging, a square
line is displayed as shown in the figure below. When this square overlaps action blocks,
the action blocks are displayed in different colors just as they are clicked. The state
where an action block is displayed in a different color is called “in the state of being
selected”. All action blocks in the state of being selected can be
moved/deleted/copies/cut/pasted at one time.

7-5. Operation of arrow path

 By clicking a black circle at a midpoint or a center of the letters such as ”Yes”,
“No”, ”A”, ”B” and ”Return” on an arrow path and dragging, the bending position of the
arrow path can be changed. When arrows and action blocks overlap and the program is
hard to read, by using this operation, the program can be made easy to read.

By clicking the area without action
block in the Program Area and

dragging, a square line is displayed.

When the square and action blocks are overlapped,
the action block will be “in the state of being

selected”. All action blocks in the state of being
selected can be moved/deleted/copies/cut/pasted

together at one time.

Program which is made
easy to read by

changing the bending
points of arrows.

● marks and
letters such as ”
Yes” and ”A”

can be dragged.

 79

7-6. Explanation of menu/toolbar

Items in the menu and functions of the buttons in the toolbar of this software will be
explained. For the items in the menu and buttons in the toolbar having the same
functions, the icons in the toolbar are indicated in parentheses after the item names.

・ File
¾ New creation（ ）・・・・Abandon the currently created program and start

creation of a new program.
¾ Open（ ）・・・・・・Load the program saved in a file.
¾ Save（ ）・・・Save the currently created program. If the program has no name,

give a name to the program and save it.
¾ Save as・・Save the currently created program with a different name.
¾ Exit・・・・・・・・End this software.

・ Edit
¾ Undo（ ）・・・・・Return the currently created program to the last state.
¾ Redo（ ）・・・・・Bring the program subjected to ”Undo” forward to the next

state.

¾ Cut（ ）・・・・・Copy the currently selected action block in the Program Area
and delete it.

¾ Copy（ ）・・・・・・Copy the currently selected action block in the Program
Area.

¾ Paste（ ）・・・・・Paste the action block cut by ”Cut” and copied by ”Copy” in
the Program Area.

¾ Delete・・・・・・・・Delete the currently selected action block in the Program
Area.

¾ All select・・・・・Select all action blocks that are currently in the Program Area.

 80

・ Program
¾ Program write（ ）・・・Write the currently created program in the robot.
¾ Program load・・・・・Load the program recorded in the robot into the Program

Area.
Save the screen shot of program area・・・Save the image of recent program area The
image is JPEG format

・ Setting
¾ Setting of motor・・・・・・・・Adjust the wheel speed of the robot.
¾ Setting of motor(Simulator)・・・Adjust the wheel speed of the simulator robot.
¾ Setting of functions for advanced-level users・・・Open the dialogue for setting

on whether the functions for advanced-level users will be used.
¾ Display of Memory Map・・・・・・Display the Memory Map on the screen.

・ Help
¾ Version information・・・・・Copyright notice and version information about this

software can be checked. By clicking this item, the dialogue shown below is
displayed.

¾ Update of firmware・・Update the program written into the robot body. A new

version of firmware is released on the Product Support Page. Update of
firmware rewrites the program in your robot to the new version.

The number for “Version”
and ”Release No.”

for ”Comment” indicate the
version of this software.

 81

7-7. Explanation of shortcut key
By conducting a specific key operation on the keyboard of PC, some items of the menu

introduced in this document can be called up. This function is called a shortcut key. It
should be noted that the operating procedure differs depending on which side of the
screen the mouse cursor is placed when a shortcut key is entered, ”Program Area” side
or ”Icon Area/Sensor Area/Setting Area” side. For details, refer to the description below.

●When the mouse cursor is placed on the Program Area side:
・ Ctrl（control key）+A・・・Same as “Edit” on the menu → ”Select All”
・ Ctrl + C・・・・・・Same as “Edit” on the menu → ”Copy”
・ Ctrl + V・・・・・・Same as “Edit” on the menu → ”Paste”
・ Ctrl + X・・・・・・Same as “Edit” on the menu→”Cut”
・ Delete キー・・・・Same as “Edit” on the menu”→”Delete”
・ Ctrl + Q・・・・・・Same as ”File” on the menu→”Exit”
・ Ctrl + Z・・・・・・Same as “Edit” on the menu→”Undo”
・ Ctrl + Y・・・・・・Same as “Edit” on the menu→”Redo”

●When the mouse cursor is placed on the Icon Area/Sensor Area/Setting Area side:
・ Ctrl + A・・・・・・Select all texts for the value setting.
・ Ctrl + C・・・・・・Select all the selected texts for the value setting.
・ Ctrl + V・・・・・・Paste the copied text to the value setting item.
・ Ctrl + X・・・・・・Cut the selected value setting text.
・ Ctrl + Z・・・・・・Return the value setting text to the last status.

 82

8. Others
8-1. Answers to the exercises

・ Program in which the right LED flashes twice at intervals of 1 second and the left

LED flashes three times at intervals of 1 second.
First, create a program in which the right and left LEDs ”flash once at intervals of 1

second”. The commands to be used and settings are as shown in the figure below.

 Next, make a program in which the right LED flashes three times at intervals of 1
second and make a program in which the left LED flashes twice. Then, connect the
programs as shown in the figure below. Now, the program is completed.

 83

・ Write a square having each side of 30 cm in length on paper, and create a program

in which the robot traces around the square.
First, for robot currently in use, check to see ”for what seconds it takes the robot to

move forward by 30 cm” and ”for what seconds it takes the robot to turn 90 degrees.”
Create a program as shown in the figure below. Then, change the number of seconds
many times and execute the program to examine a correct number of seconds.

30 cm= For
what seconds?

90 degrees =For
what seconds?

 84

 After the setting for moving forward by 30 cm and that for turning by 90 degrees are
completed, place four action blocks side by side, respectively, and connect them as
shown in the figure below. Now, the program is completed. With the program, however,
the robot may not move properly due to a subtle error. In that case, adjust the number of
seconds.

・ Program for Line Trace using the right sensor

First, change the setting at the branch command for the ”left sensor” to the ”right sensor”.

In addition, delete the ”Turn left ” command.

 Instead of the deleted “Turn left”, add ”Turn right” and connect as shown in the figure
below. Now, the program is completed. For the “Turn right" command, select the setting
item ”Turn right”.

 85

8-2. Load of program from the robot body

On this software, the program written into the robot body can be loaded and displayed
in the Program Area. To load the program from the robot body, click ”Program” on the
menu →”Program load”. After click, a confirmation message that the currently edited
program should be saved or loaded is displayed. If it may be loaded without any problem,
click ”Yes”. After load of the program is completed, the loaded program is displayed in
the Program Area. At the same time, the right and left wheel speeds are loaded and the
setting is updated.

 Concerning load of a program, it should be noted that completely the same content as
the written content cannot be displayed. Other precautions are described below. Take
due caution in execution of loading.
・ Coordinate data of action block is not recorded into the robot. Therefore, the

coordinate of action block in the loaded program may be quite different from that in
the written program.

・ Action block having no arrow connected to any block will be automatically connected
to ”Exit”.

・ If time is not designated for an action block for Move or LED, setting of the number
of seconds itself is not written into the robot, and the number of seconds may be
different from that in the written program.

・ For a branch or arithmetic action block, either a constant or Memory Map is
selected on the second line. The data of the item not selected is not written into the
robot and the setting of a constant or Memory Map may be different from that in the
written program.

・ For a LOOP action block, if ”Repeat endlessly (infinite number)” has been
set, ”Repeat endlessly (infinite number)” is not set in the loaded program. However,
after the LOOP action ends, the arrow will be automatically connected to the start
of LOOP. (Actually, ” Repeat endlessly (infinite number)” is set.)

・ Depending on connection of action blocks or settings, multiple action blocks may be
integrated as one action.

・ Move action block for which speed or turning rate can be set may be replaced
with ”Move forward” or ”Turn left or right”.

・ The above-mentioned differences exist, but when a loaded program is written back
into the robot again, completely the same program is executed.

 86

8-3. Update the firmware of the robot
 In the robot body, the most basic program called ”firmware” has been written in order
to communicate with PC or execute a created program. The firmware is not lost even if a
program is written into the robot from this software. In the future, if the firmware is
updated to improve debug or functions of the robot body, download a new firmware from
the Support Page and write into the robot, thereby updating your robot, too.

 To update the firmware of the robot body, take the following procedure.

 First, connect PC and the robot. Then, click ”Help”→”Update of firmware” on the
menu. The confirmation message for update appears. When you want to update, click ”
Yes”.

 After clicking “Yes”, the window for selecting a file for firmware is displayed. Select
the file for the downloaded firmware and click ”Open”.

 When the file is opened, update of the firmware automatically starts. Wait till update
is completed just as writing of a program. When the message shown in the right figure
below is displayed, update of the firmware is completed.

 If update of the firmware ends in failure, re-execute update.

 87

8-4. Save screenshot of Program area

 Click ”Program”→”Save screenshot of Program area” on the menu, you can save
the image of recent program area The image is JPEG format. This function is useful,
when making documentations about your program.

Click ”Save screenshot of Program area ”on the menu. The file saving window will
appear. Enter the file name for the image and click ”Save”

 The Saving image is exactly same to displayed view on PC. Please note that the arrow
that is out of program area will not fall inside the image

You can save the image of all
program area.

Click ”Save screenshot of Program
area ”on the menu. And Enter the file
name for the image and click ”Save”

 88

8-5.Q&A
If any problem occurs during use of this software, refer to the following Q&A items to

find the cause and a measure. If the problem is not solved even after the measure
described below is taken or there is no symptom that corresponds to the problem in the
following items, please contact the address indicated at the end of this document.

Q: The wheels of the robot body do not rotate.
A1: The battery of the robot may be weak. If the wheels rotates feebly, there is a high

possibility that the battery is weak. Replace the battery with a new one and check to
see whether the wheels rotate properly.

A2: While the robot and PC are connected, the program may not be executed properly.
Disconnect the robot from PC and execute the program.

A3: There is a possibility that in the setting for the motor, the wheel speed has been set
at a very low speed. Referring to “3. Set for the motor”, set a higher speed for the
wheel speed.

A4: For the “Move” action blocks, the time has been set at a very short time. Therefore,
the robot may stop before it is accelerated fully. Re-set the time at a longer time.

A5: If a heavy load is applied to one of the wheels such as a case where the wheel is
stuck with something, the power of the whole robot may be reduced. As a result, the
wheels may stop. Check the wheels for getting stuck.

A6: If the motor has been installed to the robot body in a wrong direction or the parts
have not been inserted properly, power may not be supplied to the motor. Check those
points.

Q: When the program is written into the robot, the message ”Now reconnecting to
Robot...” is continuously displayed and writing ends in failure.
A1: After the robot is connected to PC and disconnected from PC several times, it may

take a long time for PC to recognize the robot depending on the PC environment.
Disconnect the robot from PC and connect it again or restart up PC before writing.

A2: If communication with the robot is interrupted during writing of a program, the
above symptom occurs. Re-connect the robot to PC completely, and execute writing
without touching or moving the robot.

 89

Q: Although a program is not being executed, the motor runs.
A: If the robot is connected to PC with the power switch ON, a program may be started

suddenly or the motor may start running. Before connecting the robot to PC, be sure
to turn off the power.

Q: When the robot body is operating, the power is shut off or reset frequently.
A1: The battery of the robot body may be weak. Replace the battery with anew one and

check to see if the problem is resolved.
A2: A heavy load may be applied to the robot wheels, reducing the power of the whole

robot body. Check the wheels for any problem such as getting stuck with something.

Q: Smoke, spark or odor was given out from the robot body.
A1: There may be a short in the wiring for the robot. Immediately, turn off the power

switch, disconnect the communication cable and remove the battery. Then, contact at
the address indicated at the end of this document.

Q: Even if the robot is connected to PC, no communication is established.
A1: If the robot has been connected with the robot body being reversed, it has not been

inserted fully or it has been inserted obliquely, the robot may not properly get in
contact with PC, resulting in communication error. Check to see if the robot has been
connected properly.

A2: If writing of a program into the robot ended in failure or this software is forcefully
terminated due to any cause, PC may not properly recognize the robot. In this case,
disconnect the robot from PC and then, re-connect. Check to see if the problem is
resolved.

Q: Communication between PC and the robot is sometimes shut off suddenly.
A1: If the robot is moved roughly while the robot is connected to PC, contact of the robot

with PC may become unstable and communication may be shut off. While the robot is
connected to PC, do not move the robot too roughly.

A2: If the robot has not been inserted fully or it has been inserted obliquely, contact of
the robot with PC may become unstable and communication may be shut off. Check to
see if the robot has been connected properly.

 90

Q: When a program is written into the robot, the error message” Program data size is
too large” is displayed and the program cannot be written.

A: If the data size of a created program exceeds the capacity of the robot, the program
cannot be written into the robot body. Data of action blocks having no connection of
arrow in the program are written into the robot body. Therefore, delete unnecessary
blocks to reduce the program data size within the capacity.

Q: For an Arithmetic command, a value in the Memory Map is not changed to an

intended value.
A1: Only an integer of 0 to 255 can be entered in each item of Memory Map. The

resultant value of arithmetic is automatically corrected to an integer within the range.
If the resultant value of arithmetic is 256 or larger, it is corrected to 255 and if it is a
negative value, it is corrected to 0. If the resultant value of a division is a decimal
value, all digits to the right of the decimal point are discarded.

Q: When activating software, the error message["Gdiplus.dll Not Found"] is displayed.
A: This error message will be displayed, when gdiplus.dll is not installed on

Windows2000 PC or Old PC. In this case, open the folder ''gdiplus'' in the folder
''BeautoBuilderR'', copy the file ''gdiplus.dll'' and put it in the folder that contains the
file ''cl_edit_r.exe''.

Q: Virtual robot doesn’t move in the simulator window.
A3: Motor speed [simulator] might be too much slow. Change the motor speed settings.
A4: The time for the robot to move might be short. Please make the time long.

Q: Virtual robot goes through the goal, but it has not recognized as goal.
A: In some course, passing goal is not recognized as a goal. There would be no goal,

virtual robot did not stop at the goal.

 91

●Contact
Vstone Co., Ltd.
2-15-28, Mitejima, Nishiyodogawa-ku, Osaka-city, Osaka 555-0012 Japan
Tel:06-4808-8701 Fax:06-4808-8702
e-mail: infodesk@vstone.co.jp
Product Support URL:

 http://www.vstone.co.jp/english/products/beauto_racer/download.html
URL: http://www.vstone.co.jp/english/

(2011/3/4)

